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SUMMARY 
During the initiation of extrusion through conical dies, a short while after the specimen's front end has 
entered the die working area, the prevailing plastic flow might be such that the velocity and the stress deviator 
are already time independent while the hydrostatic pressure is still changing with time, because of its depen- 
dence on the position within the die of the advancing front end of the specimen. This pseudo-steady flow 
is the subject of analysis here. Frictionless die walls, absence of body forces, negligible accelerations, and 
rigid-perfectly plastic Mises materials are assumed. Aside from these simplifications, the analytical sohition 
presented is exact. 

1. Introduction 

The continuous flow of plastic material in a conical region bounded by frictionless walls, 

far f rom the region's entry and exit, is one of the few axisymmetrical cases where the Mises 

equations for ideal plasticity (i.e., flow incompressibility, balance of linear momentum,  

St. Venant-Levy-Mises flow rule and Maxwell-Mises yield criterion [1]) have been solved 
without any simplifying assumptions other than the neglect of  all the body forces, including 

those caused by accelerations. The solution is due to Hoffman and Sachs [2] and consist 
of a cylindrical state of  stress and a spherical velocity field of  the form 

Srr = - -2Soo  = - - 2 S , o  = -~ao, S~o = S ,  o = So ,  = O, 

p = A  + 2 a o l n r + Z a  o, v r = B r  -2, Vo=vo=O.  
(1) 

In (1), S denotes the stress deviator, ao is the yield stress in uniaxial tension, p is the hydro- 
static pressure, v denotes the flow velocity, and (r, 0, ~b) are spherical coordinates centered 
at the cone apex (Figure 1); A and B are constants of  integration to be determined by the 
conditions at the entry or exit f rom the conical region confining the plastic flow. 

Assuming that a constant volumetric rate of  flow, Q, is maintained at the die entry, 
flow continuity requires that 

Q = - v,)" 27rr sin Or dO, (2) 

where the minus sign appears because the flow is directed toward the cone apex, in the 
opposite direction of  r. Substitution of vr from (1) into (2) and integration lead to an 
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Figure 1. Plug flow geometry. 
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Figure 2. Initiation of extrusion. 

expression for B which, when substituted back into (1), yields 

( -  1)Q (3) 
vr = 47zr z sin 2 (c~/2) " 

The expression for the hydrostatic pressure, p, cannot be obtained with the same ease and 
generality. This is because the calculation of the constant A requires a knowledge of the 
exact extent of the conical region confining the plastic flow--so that a stress boundary 
condition can be applied at one of the limiting surfaces other than the conical one. 

In their original work related to continuous metal forming with conical dies, Hoffman 
and Sachs assumed that: 1) the die entry and exit are both spherical surfaces centered at 
cone apex, and 2) the plastic flow governed by (1) prevails throughout the region bounded 
by the die wall--from the die entry to the die exit. Under these additional (and unjustified) 
assumptions, the analysis revealed that the power required to drive the process depends 
logarithmically on the ratio of the radius of the undeformed and the deformed specimen. 

Although (1) would have seemed to be a good start for additional research into the nature 
of axisymmetrical solutions of Mises equations, we have not found in the literature any 
further attempts to calculate exactly the value of the constant of integration, A, for the 
problem of continuous forming, or for related problems to which the plastic flow of (1) 
might apply. 

In this paper, we present analytical solutions to two problems which are related to metal 
forming through conical dies. In both cases, we find the extent of the region confining the 
plastic flow governed by (1), calculate the value of the constant of integration A, and then 
--from the solution so derived--obtain the expression for the pressure gradient required 
to drive each of the processes, and for the pressure distribution to be supported by the inner 
wall of the die. 

The first problem concerns the pseudo-steady plastic flow of a short metal plug within 
a long conical die (Figure 1). For this problem, the analysis of Section 2 leads to a solution 
which fulfills the two additional assumptions made by Hoffman and Sachs mentioned 
earlier in this introduction. Their result, therefore, although originally presented as a 
solution to the problem of continuous forming, applies strictly only to the plug flow de- 
scribed here. 
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The presentation of the plug flow, aside from showing the circumstances under which 
Hoffman and Sach's solution is "exact" serves also as a convenient intermediate step 
toward the solution of the main problem in this paper, concerning the pseudo-steady 
plastic flow which precedes the setting in of the continuous forming by extrustion. This 
pseudo-steady flow is characterized by the specimen's front end being in the die working 
area and moving towards the die exit, while--at the same time--the back end of the speci- 
men, still undeformed outside the die, is moving as a rigid body towards the die entry. 

In Section 3, we calculate the surface which separates the rigid motion outside the die 
from the plastic flow inside; on this surface, located at the die entry, the velocity of the 
material suffers a transversal discontinuity (i.e., the velocity component tangential to the 
surface changes from one side to the other side of the surface). We prove that the shear 
losses on the surface of separation at the die entry are indeed positive, then proceed to 
calculate the expression for the pressure gradient required to drive the process, and for the 
pressure distribution on the inner wall of the die. 

Further insight into the process of initiation of extrusion is gained by calculating the 
rates at which mechanical energy is dissipated inside the die working area and upon the 
die entry surface (Section 4). The results show that an increase in the die angle leads to an 
increase in the power being dissipated along the die entry and a decrease in the power 
needed to overcome the resistance of the material to deformation. The analysis shows that 
the total power required by the process is the same for any die angle. The significance of 
the result, in view of the known presence of a die-angle effect in continuous forming with 
conical dies, is discussed in Section 5, which concludes the paper. 

2. P l u g  f low 

This type of flow is possible whenever the length of the specimen relative to that of the die 
is sufficiently small to permit the specimen to be fully confined within the die working area 
for as long as it is needed by the pseudo-plastic flow of (1) to establish itself, assuming that 
no buckling or other type of instability occurs. 

On condition that the extrusion pressure, Pc, is due to an incompressible fluid being 
pumped at a constant rate of volumetric flow, Q, the constant of integration B is calculable 
as before, yielding the expression (3) for the radial velocity. To calculate the other constant 
of integration, A, we assume a receiving pressure, p~ (p~ > 0). This imposes the condition 
that the stress vector on the front end surface, ~ ,  must be normal to the surface and equal 
to -p~. The condition is satisfied if S~ is spherical all the time and 

a t r  = r i :  % = - p ~ ,  (4) 

where r~ denotes the instantaneous radius of Z~ and o- is the stress tensor. 
In (4), we replace art by Srr -- P, substitute Srr and p from (1), then solve for A. Substi- 

tution of A back into the expression for the hydrostatic pressure in (1) yields 

r 
P = Pi + 2% In - -  + ~a 0. (5) 

ri 

The surface, Ee, upon which the external pressure, Pe, acts is also spherical if the viscosity 
of the extruding fluid is low. Moreover, upon I;e 
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a t / ~  = r e : O'rr = - - P e ,  (6) 

must be satisfied, where r e denotes the instantaneous radius of Se. We replace o'rr in (6) 
by Srr -- p, substitute S,r from (1) and p from (5), then solve for the pressure gradient, 
P ~ -  Pi, to obtain 

P e -  Pi = 2a0 In [r~/./' "~ 
\ r e  / 

(7) 

The pressure distribution on the inner wall of the die, Pw, is given by -o-00, which ex- 
pressed as p - Soo is calculable from (1) and (5) 

Pw =Pl  + ao + 2ao In (8) 

The expressions of (7) and (8) are in fact the classical results of Hoffman and Sachs. 
They are applicable, however, in the strict sense of the word, only to the plug flow since 
this is the case where Z, and Ze are indeed spherical and the plastic flow governed by (1) 
extends truly throughout the region bounded by/;, ,  Se, and the conical surface of the die. 

3. Initiation of extrusion 

The situation described in this section is likely to occur when the specimen and the die are 
both sufficiently long for the pseudo-plastic flow governed by (1) to establish itself before 
any one of the following conditions are violated: 1) there is still a portion left of the un- 
deformed specimen outside the die, and 2) the specimen's front end has not yet reached 
the die exit (Figure 2). 

Assuming that the undeformed portion of the specimen moves as a rigid body with a 
constant axial velocity, Vs, toward the cone apex, the volumetric rate of flow, Q, is constant 
and related to V~ by 

Q 2 = 7rR~ V,, (9) 

where R~ denotes the radius of the undeformed portion. 
Inside the die working area, the material is assumed to have reached the pseudo-steady 

state of (1) and, consequently, its radial velocity is given by (3). As before, we denote by 
p~, p~ >- 0, the receiving pressure. The same kind of considerations as those applied for 
the plug flow lead to the conclusion that the front end surface, ~ ,  is spherical; moreover, 
the boundary condition at ~ is satisfied, when the hydrostatic pressure is calculated from 
(5) as before. 

Although neither the velocity field nor the stress tensor differ here from their counterpart 
for the plug flow, the two situations are not identical since the extent of the region confining 
the plastic flow is not the same. In plug flow, the deforming material is confined between 
two spherical surfaces, ~ and 27e, and the conical surface of the die inner wall, whereas 
during the initiation of extrusion, the plastic flow is confined between the spherical surface 
2J~, the conical surface of the die inner wall, and another surface, S,, yet to be calculated, 
which separates the plastic flow from the rigid motion of the undeformed portion of the 
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specimen, still outside the working area of the die. As we shall see, for positive die angles, 

2~s, is not spherical. 
The shape of the surface of separation, Z~, must be such that the discontinuity in the  

velocity is tangential to the surface. We express the shape of ~s by the equation 

F(r, O) =- r - s(O) = 0, (10) 

where s(O) is an unknown function of 0. 
The gradient of F, whose components are 

1 ds 
(grad F)r = 1, (grad F)o - , (11). 

s dO 

is normal to the surface I; s. Since the vector representing the difference between the velocity 
on the two sides of 27s: 

( -  1)Q (12). 
Avr = ( -  V~ cos 0) - 4~zr 2 sin2 &/2) ' 

A Vo = V~ sin 0, 

must be tangential to 2~,, its scalar product with the gradient of F is zero. 

Art(grad F)~ + Avo(grad F)o = 0. (13} 

From (9), (11), (12) and (13), we derive 

2 cos 2 (~/2), (14). s 2 cos 0 + ss' sin 0 = r~ 

which is the differential equation to be satisfied by the shape function s(O). In (14), s' de- 
notes ds/dO and r~ has the value, r~ = R~ cosec ~ (see Figure 2). 

The boundary condition applicable to (14) is 

at 0 = a : s(O) = r~, (15) 

since the geometry of the problem imposes the condition that all points on the circle 
(r = r~, 0 - ~, ~b)--which is the intersection of the conical surface of the die and the 
cylindrical surface of the undeformed specimen--are to be on the surface of separation, ~.. 

The solution to (14) which satisfies (15) is 

cos (c~/2) 
s = rs cos(0/2) " (16) 

Substitution of (16) into (10) leads to the following representation for the surface o f  
separation, 27s: 

cos (~/2) 
a t Z , : r = r ,  cos(0/2) 0 < 0 < c o  (17} 

To be acceptable, the solution so far must pass one more test: the tangential component 
of the force exercised across each element of  27, by the material in rigid motion upon the  
material in plastic flow must have the same direction as the velocity of the former relative 
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to the latter. In other words, we have to verify that the shear along Z s is indeed associated 
with dissipation of mechanical power. 

The velocity of the undeformed material on one side of Zs relative to that of the deforming 
material on the other side is the difference between the absolute velocity (i.e., the velocity 
relative to the stationary die) of the former and the latter; consequently, the components 
of the relative velocity are Avr and Avo, as calculated in (12). 

Considering that the traction components of the stress tensor in (1) must be continuous 
across I7~, the force, 0T, exercised on a differential element, ~27s, by the undeformed material 
upon the material flowing plastically is calculable in terms of t, the stress vector of the 
plastic flow: 

c~r~ = t/~E~, c~To = toC~V~. (18) 

Accounting only for the non-zero components of the stress tensor, we have: t, = n , %  

and to = noaoo, where n, and no are the components of the outward unit normal to Zs 
(i.e., the unit normal directed away from the region confining the plastic flow). The com- 
ponents, nr and n o, are equal to the components of the gradient of F, divided by the magni- 
tude of the gradient. From (1 1) 

s ( -  1)s' 
n, (s 2 + s,Z) ~ , no (s 2 + s,Z)a.. (19) 

With the exception of ~2~, everything is now available for calculating 0T. The element of 
surface, #X~, 0 ~  = 27~r sin O[(rdO) 2 q- (dr)Z] ~, is, however, simply calculated by means 
of  equation (10), which permits the replacement of r by s, and of dr by s'dO. Finally, (16) 
is used to express s in terms of 0. 

Since the relative velocity Av, has no component normal to Ss, testing that the tangential 
components of OT and Av have the same direction is equivalent to showing that the scalar 
product of the two vectors is non-negative: 

Av,~T~ + Avo~T o >= O. (20) 

Incidently, the left hand side expression in (20) is the local rate, ~ ,  at which mechanical 
energy is dissipated per unit time--the shear losses--upon a differential element OS~. 

All the variables in (20) have now been calculated in terms of the fields in (1). The use 
of (1), (3), (5), (9), (12), (16) and (19) in calculating the left hand side of (20), which is ~ ,  
leads to a positive expression, and proves the correctness of (20). 

Qo" o sin 0 
Ov~ = tan 2 (0/2) dO. (21) 

2 sin 2 (e/2) 

To show the importance of the proof of positive shear losses on a surface of velocity 
discontinuity, let us assume for a moment that the analysis is extended to include the 
possibility of another surface of separation at the die exit, 1;*, in an attempt to provide a 
solution to the plastic flow in continuous extrusion. A step-by-step repetition of the previous 
arguments produces an equation for I;* similar to equation (17). Moreover, the whole 
proof of the positive shear losses follows the previous proof (for 2~) with one exception 
.only, which is, however, fatal to the success of the proof: the outward unit normal to X* 
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points now in the opposite direction of the gradient of the function representing the surface 
S*; this change in the sign of the shear without a corresponding change in the sign of the 
relative velocity leads to an expression for the local rate of shear losses, ~k*, which is the 
same as in (21) but with a negative sign. 

With the success of the proof of admissibility of S~, the solution is complete and can 
now be used to calculate the pressure gradient required to drive the process, and the distri- 
bution of pressure on the inner wall of the die. 

The extrusion pressure, Pc, is calculable from the balance of the axial components of all 
forces acting on the undeformed specimen (we have selected the positive direction to be that 
of the flow): 

+ ~ (OT~ cos 0 - OTo sin 0) = 0. (22) ~zR2pe 
d~ s 

Note that in (22) we have used the continuity of the traction components of the stress tensor 
on S s, in order to express the force acting upon the undeformed specimen across s by a 
force equal in magnitude and opposing 0T, which acts upon the material in the plastic 
flow across the same surface. 

We calculate the components of ~T from (18), (19), (1), and (5), then substitute them 
into (22) and solve it for Pc, to obtain 

Pe = Pi "4- 20" 0 in ( Rs ~, (23) 
\Ri]  

where Re, Re = r~ sin ~, is the radius of the die at the cross-section where the specimen's 
front end is located at the instance of time considered. 

The pressure gradient required by the process is, therefore, 

p e - p ~ = 2 %  ln(R~-) .  (24) 

Note that in (24), the radius R i only is time dependent whereas in the similar equation 
for the plug flow--equation (7)--both R e and R i are time dependent. This is a direct result 
of the difference which exists in the extent of the region confining the two types of flow. 
The difference does not affect, however, the stress component, a00; consequently, the 
pressure distribution on the die inner wall is that of equation (8). 

Before closing the discussion of this section, we like to point out an important consequence 
of equation (24): the pressure gradient required during the initial phase of extrusion does 
not depend on the die angle. A detailed discussion of this result follows the power analysis 
of the next section. 

4. Power analysis 

The equations for ideal plasticity are so complex that exact analytical solutions are very 
rare. One of the methods extensively used for obtaining limited analytical information is 
the upper-bound approach (see Avitzur [3] for a detailed exposition of the method and 
its application to a variety of metal forming problems). Since the dissipation of power is 
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the main concern of the upper-bound approach, the analysis of this section provides not 
only a better understanding of the solution obtained, but also a representation of the 
solution in terms which are directly comparable with the results obtainable by the appli- 
cation of the upper-bound approach. 

There are three mechanisms of power losses: l) the deformation of the material ~n plastic 
flow, 2) the shear along surfaces of velocity discontinuity, and 3) friction on the inner wall 
of the die. With the exception of the friction mechanism, both other mechanisms are 
present here. 

Let ff~ denote the rate of mechanical energy dissipated per unit volume and unit  time, 
internally, by the stress tensor, a, acting in conjunction with the rate of strain tensor, L 
Accounting only for the non-zero components of a, 

,;v~ = arrSr~ + ~rOO800 + %~,84,4,. (25) 

We calculate the rate of strain from the non-zero radial component of the velocity field, v,, 
given by (3). 

Q 
~rr = -- �89 = -- �89 = 2rtr 3 sin2 (~/2) " (26) 

Then, use (t), (5), and (26) to obtain an expression for v~ from (25). Finally, we integrate 
over the entire volume of the plastic flow to obtain the total power, r162 dissipated internally 
by the plastic flow: 

f lF(~  Q%sinO drdO. (27) 
l~i = r sin 2 (~/2) 

a / r l  

Integration over r, then the use of (16), to express s(O), and integration over 0, yield: 

fV~=Qa o 21n ~ - sin z(e/2) 1 . (28) 

Note that an increase in e decreases the value of l~. 
The shear losses, l/~, are calculated by summing up ~ along S~. From (21) 

f l  Q~176 sin 0 0 
lk', = 2 sin z (~/2) tan2 --2 dO. (29) 

Integrations yield: 

l~s=Qa~ 21nsec(~/2)sin 2 (c~/2) 11" (30) 

Note that l~ increases with an increase in ~. 
The total power dissipated by the process, J, is the sum of lk' i and W~: 

As expected, J equals the product ( P e  - -  pi)Qcro, which is the power provided externally 
to the process, and does not depend on the die angle. Thus when large die angles are used, 
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in spite of the increase in the shear losses upon the surface of separation, the total power 
dissipated in the initial stage of the extrusion process does not depend on the die angle: 
this is because the power dissipated internally is decreased by an amount equal to the 
increase in shear losses, as a result of changes in I;s which decrease the volume of the region 
confining the plastic flow. 

5. Die-angle effect 

It is well known that the driving force required for metal forming through a conical die 
with large die angle increases with the angle of the die. The first estimate of the increase 
has been calculated by Koerber and Eichinger [3] in their analysis of the wire drawing 
process. In their view, the force required to support the angle-dependent shear losses at 
the die entry and exit has to be added to the angle-independent force required for homo- 
geneous deformation (which was already known from the work published in the late 20's 
and early 30's). 

Commenting on Koerber and Eichinger's theory, MacLellan [5] critically notes that 
" . . .  it [the approach] introduces inconsistency, however . . . .  the superposition of this 
supposed additional drawing force must change the distribution of stress on the die wall 
--precisely how, it is not easy to imagine--in order that the die reaction should continue 
to balance the net drawing force." 

Koerber and Eichinger's work also drew heavy fire from Hill and Tupper [6] who called 
it "an artificial correction", and dismissed it, apparently, on the grounds that their own 
analysis of a two-dimensional analog of wire drawing concluded that the increase in the 
drawing force was accountable by the adjustments needed in the slip-lines when large die 
angles are used. 

In spite of this initial rejection of Koerber and Eichinger's theory, renewed analysis by 
the upper-bound approach lead to the same conclusion, that the die-angle effect is due to 
the distortion at the die entry and exit. Since the upper-bound approach does have a theore- 
tical foundation, the result cannot be called anymore "an artificial correction"; moreover, 
since the method does not permit the calculation of stresses on the inner wall of the die, 
MacLellan's objection was neatly avoided (although not invalidated!). 

Yet, the upper-bound approach gives only an upper bound; therefore, it can be trusted 
only if there is assurance that the overestimation is somehow uniform for all angles. In 
other words, the explanation provided by the upper-bound approach as to the cause of the 
die-angle effect need not be correct if, for some reason or another, the overestimation of 
the power dissipated is itself dependent on the die angle in a way which tends to show an 
increase in the power required for large die angles, even when in reality none exists. Indeed, 
an upper-bound analysis of the plastic flow prevailing during the initiation of extrusion, 
leads to J*, an upper bound to J, which depends on the die angle. 

= + sin2 ~ cot~ . (32) 

Equation (32) results if the velocity field of reference [3]: 

v* = -- V~(rs/r) z cos 0, Vo = vr = O, (33) 
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is adopted for the analysis (the function f(c 0 in (32) increases slowly with the angle of the 
die but is practically 1 for small angles [3]). Similar die-dependent upper-bounds are likely 
to result for many other selections of the velocity field. 

Any statements which concern the die-angle effect and which are based on the results of 
this paper cannot be definitive since the problem solved here is not that of continuous form- 
ing. Yet, the results of this paper cast, in our view at least, a shadow of doubt on the degree 
of trust accorded to the explanation provided by the upper-bound approach that the dis- 
tortion at both, die entry and exit, account for the die-angle effect. 

Another case can be made that the solution here is an indication that no inconsistency 
of the type noted in MacLellan's criticism of Koerber and Eichinger's work need appear 
when shear losses due to velocity discontinuity are properly included in the analysis of the 
continuous forming process. Our solution to the pseudo-steady plastic flow necessitated the 
inclusion of a surface of velocity discontinuity, yet the total force on the die--due to p~- -  
exactly balances the force due to the pressure differential. This is easily verified by integrating 
Pw in (8) along the die wall, between r = r~ and r = r s. 

Finally, a case can also be made that the absence of a die angle effect in the initial stages 
of extrusion is a good indication that the effect is due to the yet unknown plastic flow in the 
region of the die exit, where--as we have seen--a simple surface of velocity discontinuity is 
not an acceptable description of the phenomena, since it implies negative shear losses. 
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